jueves, 27 de septiembre de 2012

Sinapsis.

Ver archivo.



La sinapsis es una unión intercelular especializada entre neuronas1 o entre una neurona y una célula efectora (casi siempre glandular o muscular). En estos contactos se lleva a cabo la transmisión del impulso nervioso. Éste se inicia con una descarga química que origina una corriente eléctrica en la membrana de la célula presináptica (célula emisora); una vez que este impulso nervioso alcanza el extremo del axón (la conexión con la otra célula), la propia neurona segrega un tipo de compuestos químicos (neurotransmisores) que se depositan en el espacio sináptico (espacio intermedio entre esta neurona transmisora y la neurona postsináptica o receptora). Estas sustancias segregadas o neurotransmisores (noradrenalina y acetilcolina entre otros) son los encargados de excitar o inhibir la acción de la otra célula llamada célula post sináptica.
Índice


Origen de la palabra

La palabra sinapsis viene de sinapteína, que Sir Charles Scott Sherrington y colaboradores formaron con las palabras griegas sin-, que significa "juntos", y hapteina, es decir "con firmeza".
Marco de actividad

Estos enlaces químico-eléctricos están especializados en el envío de cierto tipo de señales de pervivencia, las cuales afectan a otras neuronas, a células no neuronales como las musculares o glandulares.

Existen dos tipos de actividad base distinta, la actividad de pervivencia y la actividad de supervivencia.

La actividad sináptica de pervivencia se desarrolla en estos contextos:

    Entre dos neuronas: al estímulo lo portan los neurotransmisores de tipo aminoácido.
    Entre una neurona y una célula muscular: al estímulo lo portan los neurotransmisores de tipo éster.
    Entre una neurona y una célula secretora: al estímulo lo portan los neurotransmisores de tipo neuropéptido.

La actividad sináptica de supervivencia se desarrolla en estos contextos:

    En la actividad procreadora.
    En la actividad de consumo alimenticio.
    En la actividad de conservación homeostática extrema.

La sinapsis se produce en el momento en que se registra actividad químico-eléctrica presináptica y otra postsináptica. Si esta condición no se da, no se puede hablar de sinapsis." En dicha acción se liberan neurotransmisores" ionizados con base química, cuya cancelación de carga provoca la activación de receptores específicos que, a su vez, generan otro tipo de respuestas químico-eléctricas.

Cada neurona se comunica, al menos, con otras mil neuronas y puede recibir, simultáneamente, hasta diez veces más conexiones de otras. Se estima que en el cerebro humano adulto hay por lo menos 1014 conexiones sinápticas (aproximadamente, entre 100 y 500 billones). En niños alcanza los 1000 billones. Este número disminuye con el paso de los años, estabilizándose en la edad adulta.[cita requerida]

Las sinapsis permiten a las neuronas del sistema nervioso central formar una red de circuitos neuronales. Son cruciales para los procesos biológicos que subyacen bajo la percepción y el pensamiento. También son el sistema mediante el cual el sistema nervioso conecta y controla todos los sistemas del cuerpo.
Sinapsis tripartita

De acuerdo con las últimas investigaciones relacionadas con los astrocitos, esta sinapsis constaría de tres elementos: los pre y postsinápticos neuronales y los astrocitos cercanos, que funcionarían como reguladores en la transferencia de información en el interior del sistema nervioso.
Histología
Axón terminal
Dendrita
Soma
Axón
Núcleo
Nodo de
Ranvier
Axón terminal
Célula de Schwann
Vaina de mielina
Estructura de una neurona clásica

Axón terminal


Desde el punto de vista histológico y funcional, una neurona tiene tres zonas principales: el cuerpo o soma, las dendritas y el axón. Estos dos últimos elementos son los encargados de establecer las relaciones sinápticas: las dendritas son como antenas o tentáculos que reciben la mayoría de la información que proviene de otras células; el axón, por su parte, es el cable con el que una neurona se conecta a otras.

Las conexiones pueden establecerse a muy corto alcance, a unos cientos de micrómetros a la redonda, o a distancias mucho mayores. La moto neuronas de la espina dorsal, por ejemplo, se comunican directamente con órganos como los músculos para dar lugar al movimiento (sinapsis neuromuscular).

Una sinapsis prototípica, como las que aparecen en los botones dendríticos, consiste en unas proyecciones citoplasmáticas con forma de hongo desde cada célula que, al juntarse, los extremos de ambas se aplastan uno contra otro. En esta zona, las membranas celulares de ambas células se juntan en una unión estrecha que permite a las moléculas de señal llamadas neurotransmisores pasar rápidamente de una a otra célula por difusión. El canal de unión de la neurona postsináptica es de aproximadamente 20 nm de ancho, y se conoce como hendidura sináptica.

Estas sinapsis son asimétricas tanto en su estructura como en su funcionamiento. Sólo la neurona presináptica segrega los neurotransmisores, que se unen a los receptores transmembrana que la célula postsináptica tiene en la hendidura. El terminal nervioso presináptico (también llamado botón sináptico o botón) normalmente emerge del extremo de un axón, mientras que la zona postsináptica normalmente corresponde a una dendrita, al cuerpo celular o a otras zonas celulares. La zona de la sinapsis donde se libera el neurotransmisor se denomina zona activa. En las zonas activas, las membranas de las dos células adyacentes están unidas estrechamente mediante proteínas de adhesión celular. Justo tras la membrana de la célula postsináptica aparece un complejo de proteínas entrelazadas denominado densidad postsináptica. Las proteínas de la densidad postsináptica cumplen numerosas funciones, que van desde el anclaje y movimiento de receptores de neurotransmisores de la membrana plasmática, hasta el anclaje de varias proteínas reguladoras de la actividad de estos receptores.
Tipos de sinapsis
Sinapsis eléctrica
Esquema de una sinapsis eléctrica A-B: (1) mitocondria; (2) uniones gap formadas por conexinas; (3) señal eléctrica.
Artículo principal: Sinapsis eléctrica.

Una sinapsis eléctrica es aquella en la que la transmisión entre la primera neurona y la segunda no se produce por la secreción de un neurotransmisor, como en las sinapsis químicas (véase más abajo), sino por el paso de iones de una célula a otra a través de uniones gap, pequeños canales formados por el acoplamiento de complejos proteicos, basados en conexinas, en células estrechamente adheridas.

Las sinapsis eléctricas son más rápidas que las sinapsis químicas pero menos plásticas; por lo demás, son menos propensas a alteraciones o modulación porque facilitan el intercambio entre los citoplasmas de iones y otras sustancias químicas. En los vertebrados son comunes en el corazón y el hígado.

Las sinapsis eléctricas tienen tres ventajas muy importantes:

    Las sinapsis eléctricas poseen una transmisión bidireccional de los potenciales de acción, en cambio la sinapsis química solo posee la comunicación unidireccional.
    En la sinapsis eléctricas hay una sincronización en la actividad neuronal lo cual hace posible una coordinada acción entre ellas.
    La comunicación es más rápida en la sinapsis eléctricas que en las químicas, debido a que los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores.

Sinapsis química

La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20-30 nanómetros(nm), la llamada hendidura sináptica.

La liberación de neurotransmisores es iniciada por la llegada de un impulso nervioso (o potencial de acción), y se produce mediante un proceso muy rápido de secreción celular: en el terminal nervioso presináptico, las vesículas que contienen los neurotransmisores permanecen ancladas y preparadas junto a la membrana sináptica. Cuando llega un potencial de acción se produce una entrada de iones calcio a través de los canales de calcio dependientes de voltaje. Los iones de calcio inician una cascada de reacciones que terminan haciendo que las membranas vesiculares se fusionen con la membrana presináptica y liberando su contenido a la hendidura sináptica. Los receptores del lado opuesto de la hendidura se unen a los neurotransmisores y fuerzan la apertura de los canales iónicos cercanos de la membrana postsináptica, haciendo que los iones fluyan hacia o desde el interior, cambiando el potencial de membrana local. El resultado es excitatorio en caso de flujos de despolarización, o inhibitorio en caso de flujos de hiperpolarización. El que una sinapsis sea excitatoria o inhibitoria depende del tipo o tipos de iones que se canalizan en los flujos postsinápticos, que a su vez es función del tipo de receptores y neurotransmisores que intervienen en la sinapsis.

La suma de los impulsos excitatorios e inhibitorios que llegan por todas las sinapsis que se relacionan con cada neurona (1000 a 200.000) determina si se produce o no la descarga del potencial de acción por el axón de esa neurona.
Clases de transmisión sináptica

Se distinguen tres tipos principales de transmisión sináptica; los dos primeros mecanismos constituyen las fuerzas principales que rigen en los circuitos neuronales:

    transmisión excitadora: aquella que incrementa la posibilidad de producir un potencial de acción;
    transmisión inhibidora: aquella que reduce la posibilidad de producir un potencial de acción;
    transmisión moduladora: aquella que cambia el patrón y/o la frecuencia de la actividad producida por las células involucradas.

Fuerza sináptica

La fuerza de una sinapsis viene dada por el cambio del potencial de membrana que ocurre cuando se activan los receptores de neurotransmisores postsinápticos. Este cambio de voltaje se denomina potencial postsináptico, y es resultado directo de los flujos iónicos a través de los canales receptores postsinápticos. Los cambios en la fuerza sináptica pueden ser a corto plazo y sin cambios permanentes en las estructuras neuronales, con una duración de segundos o minutos, o de larga duración (potenciación a largo plazo o LTP), en que la activación continuada o repetida de la sinapsis implica que los segundos mensajeros inducen la síntesis proteica en el núcleo de la neurona, alterando la estructura de la propia neurona. El aprendizaje y la memoria podrían ser resultado de cambios a largo plazo en la fuerza sináptica, mediante un mecanismo de plasticidad sináptica.
Integración de señales sinápticas
Despolarización en una célula excitable, causada por una respuesta sináptica.

Generalmente, si una sinapsis excitatoria es fuerte, un potencial de acción en la neurona presináptica iniciará otro potencial en la célula postsináptica. En una sinapsis débil, el potencial excitatorio postsináptico ("PEPS") no alcanzará el umbral para la iniciación del potencial de acción. En el cerebro, cada neurona mantiene conexiones o sinapsis con muchas otras, pudiendo recibir cada una de ellas múltiples señales. Cuando se disparan potenciales de acción simultáneamente en varias neuronas que se unen en sinapsis débiles a otra neurona, pueden forzar el inicio de un impulso en esa célula a pesar de que las sinapsis son débiles.

Por otro lado, una neurona presináptica que libera neurotransmisores inhibitorios, como el GABA, puede generar un potencial inhibitorio postsináptico ("PIPS") en la neurona postsináptica, bajando su sensibilidad y la probabilidad de que se genere un potencial de acción en ella. Así la respuesta de una neurona depende de las señales que recibe de otras, con las que puede tener distintos grados de influencia, dependiendo de la fuerza de la sinapsis con esa neurona. John Carew Eccles realizó algunos experimentos importantes en los inicios de la investigación sináptica, por los que recibió el Premio Nobel de Fisiología o Medicina en 1963. Las complejas relaciones de entrada/salida conforman las bases de la computación basada en transistores, y se cree que funcionan de forma similar en los circuitos neuronales.
Propiedades y regulación

Tras la fusión de las vesículas sinápticas y la liberación de las moléculas transmisoras en la hendidura sináptica, el neurotransmisor es rápidamente eliminado del espacio por proteínas especializadas en su reciclaje, situadas en las membranas tanto presináptica como postsináptica. Esta recaptación evita la desensibilización de los receptores postsinápticos y asegura que los potenciales de acción subsiguientes generen un PEP de la misma intensidad. La necesidad de una recaptación y el fenómeno de la desensibilización en los receptores y canales iónicos significa que la fuerza de la sinapsis puede disminuir si un tren de potenciales de acción llega en una sucesión rápida, un fenómeno que hace que exista una dependencia de la frecuencia en las sinapsis. El sistema nervioso se aprovecha de esta propiedad para computaciones, y puede ajustar las sinapsis mediante la fosforilación de las proteínas implicadas. El tamaño, número y tasa de reposición de las vesículas también está sujeto a regulación, así como otros muchos aspectos de la transmisión sináptica. Por ejemplo, un tipo de fármaco conocido como inhibidores selectivos de la recaptación de serotonina o SSRI afectan a ciertas sinapsis inhibiendo la recaptación del neurotransmisor serotonina. Por el contrario, un neurotransmisor excitatorio muy importante, la acetilcolina, no es recaptada, pero es eliminada por acción de la enzima acetilcolinesterasa.

Transporte a través de Membrana.

Click aquí para ver el archivo.


Transporte a través de la membrana celular o plasmática

El proceso de transporte es importante para la célula porque le permite expulsar de su interior los desechos del metabolismo, también sustancias que sintetiza como hormonas y además, es forma en que adquiere nutrientes del medio externo, gracias a la capacidad de la membrana celular de permitir el paso o salida de manera selectiva de algunas sustancias. Las vías de transporte a través de la membrana celular y los mecanismos básicos para las moléculas de pequeño tamaño son:
Transporte pasivo

Transporte simple de moléculas a través de la membrana plasmática, durante el cual la célula no requiere usar energía, debido a que va a favor del gradiente de concentración o del gradiente de carga eléctrica. Hay tres tipos de transporte pasivo:

    Ósmosis: (transporte de moléculas de agua solvente) a través de la membrana plasmática a favor de su gradiente de concentración.
    Difusión simple: paso de sustancias a través de la membrana plasmática como los gases respiratorios y el alcohol.(movimiento de solutos)
    Difusión facilitada: transporte celular donde es necesaria la presencia de un carrier o transportador (proteína periférica) para que las sustancias atraviesen la membrana.


    Mediante la bicapa lipídica.
    Mediante los canales iónicos.

Ósmosis


 Comportamiento de célula animal ante distintas presiones osmoticas
Comportamiento de célula vegetal ante distintas presiones osmoticas

La ósmosis es un tipo especial de transporte pasivo en el cual sólo las moléculas de agua son transportadas a través de la membrana. El movimiento de agua se realiza desde el punto en que hay menor concentración de solutos al de mayor concentración para igualar concentraciones en ambos extremos de la membrana bicapa fosfolipidica. De acuerdo al medio en que se encuentre una célula, la ósmosis varía. La función de la ósmosis es mantener hidratada a la membrana celular. Dicho proceso no requiere gasto de energía. En otras palabras, la ósmosis es un fenómeno consistente en el paso del solvente de una disolución desde una zona de baja concentración de soluto a una de alta concentración del soluto, separadas por una membrana semipermeable.
Ósmosis en una célula animal

    En un medio isotónico, hay un equilibrio dinámico, es decir, el paso constante de agua.
    En un medio hipotónico, la célula absorbe agua hinchándose y hasta el punto en que puede estallar dando origen a la citólisis.
    En un medio hipertónico, la célula pierde agua, se arruga llegando a deshidratarse y se muere, esto se llama crenación.

Ósmosis en una célula vegetal

    En un medio isotónico, existe un equilibrio dinámico.
    En un medio hipotónico, la célula toma agua y sus vacuolas se llenan aumentando la presión de turgencia, dando lugar a la turgencia.
    En un medio hipertónico, la célula elimina agua y el volumen de la vacuola disminuye, produciendo que la membrana plasmática se despegue de la pared celular, ocurriendo la plasmólisis

Difusión facilitada

Algunas moléculas son demasiado grandes como para difundir a través de los canales de la membrana y demasiado hidrofílicos para poder difundir a través de la capa de fosfolípidos y colesterol. Tal es el caso de la glucosa y algunos otros monosacáridos.

Estas sustancias, pueden sin embargo cruzar la membrana plasmática mediante el proceso de difusión facilitada, con la ayuda de una proteína transportadora. En el primer paso, la glucosa se une a la proteína transportadora, y esta cambia de forma, permitiendo el paso del azúcar. Tan pronto como la glucosa llega al citoplasma, una quinasa (enzima que añade un grupo fosfato a un azúcar) transforma la glucosa en glucosa-6-fosfato. De esta forma, las concentraciones de glucosa en el interior de la célula son siempre muy bajas, y el gradiente de concentración exterior → interior favorece la difusión de la glucosa.

La difusión facilitada es mucho más rápida que la difusión simple y depende:

    Del gradiente de concentración de la sustancia a ambos lados de la membrana
    Del número de proteínas transportadoras existentes en la membrana
    De la rapidez con que estas proteínas hacen su trabajo

Transporte activo

Es un mecanismo que permite a la célula transportar sustancias disueltas a través de su membrana desde regiones de menor concentración a otras de mayor concentración. Es un proceso que requiere energía, llamado también producto activo debido al movimiento absorbente de partículas que es un proceso de energía para requerir que mueva el material a través de una membrana de la célula y sube el gradiente de la concentración. La célula utiliza transporte activo en tres situaciones:

    cuando una partícula va de punto bajo a la alta concentración.
    cuando las partículas necesitan la ayuda que entra en la membrana porque son selectivamente impermeables.
    cuando las partículas muy grandes incorporan y salen de la célula.

En la mayor parte de los casos este transporte activo se realiza a expensas de un gradiente de H+ (potencial electroquímico de protones) previamente creado a ambos lados de la membrana, por procesos de respiración y fotosíntesis; por hidrólisis de ATP mediante ATP hidrolasas de membrana. El transporte activo varía la concentración intracelular y ello da lugar un nuevo movimiento osmótico de rebalanceo por hidratación. Los sistemas de transporte activo son los más abundantes entre las bacterias, y se han seleccionado evolutivamente debido a que en sus medios naturales la mayoría de los procariotas se encuentran de forma permanente o transitoria con una baja concentración de nutrientes.

Los sistemas de transporte activo están basados en permeasas específicas e inducibles. El modo en que se acopla la energía metabólica con el transporte del soluto aún no está dilucidado, pero en general se maneja la hipótesis de que las permeasas, una vez captado el sustrato con gran afinidad, experimentan un cambio conformacional dependiente de energía que les hace perder dicha afinidad, lo que supone la liberación de la sustancia al interior celular.

El transporte activo de moléculas a través de la membrana celular se realiza en dirección ascendente o en contra de un gradiente de concentración (Gradiente químico) o en contra un gradiente eléctrico de presión (gradiente electroquímico), es decir, es el paso de sustancias desde un medio poco concentrado a un medio muy concentrado. Para desplazar estas sustancias contra corriente es necesario el aporte de energía procedente del ATP. Las proteínas portadoras del transporte activo poseen actividad ATPasa, que significa que pueden escindir el ATP (Adenosin Tri Fosfato) para formar ADP (dos Fosfatos) o AMP (un Fosfato) con liberación de energía de los enlaces fosfato de alta energía. Comúnmente se observan tres tipos de transportadores:

    Uniportadores: son proteínas que transportan una molécula en un solo sentido a través de la membrana.
    Antiportadores: incluyen proteínas que transportan una sustancia en un sentido mientras que simultáneamente transportan otra en sentido opuesto.
    Simportadores: son proteínas que transportan una sustancia junto con otra, frecuentemente un protón (H+).

Transporte activo primario: Bomba de sodio y potasio
Artículo principal: Bomba sodio-potasio.

Se encuentra en todas las células del organismo, en cada ciclo consume una molécula de ATP y es la encargada de transportar 2 iones de potasio que logran ingresar a la célula, al mismo tiempo bombea 3 iones de sodio desde el interior hacia el exterior de la célula (exoplasma), ya que quimicamente tanto el sodio como el potasio poseen cargas positivas. El resultado es ingreso de 2 iones de potasio (Ingreso de 2 cargas positivas) y egreso de 3 iones de sodio (Egreso de 3 cargas positivas), esto da como resultado una perdida de la electropositividad interna de la célula, lo que convierte a su medio interno en un medio "electronegativo con respecto al medio extracelular". En caso particular de las neuronas en estado de reposo esta diferencia de cargas a ambos lados de la membrana se llama potencial de membrana o de reposo-descanso. Participa activamente en el impulso nervioso, ya que a través de ella se vuelve al estado de reposo.
Transporte activo secundario o cotransporte

Es el transporte de sustancias que normalmente no atraviesan la membrana celular tales como los aminoácidos y la glucosa, cuya energía requerida para el transporte deriva del gradiente de concentración de los iones sodio de la membrana celular (como el gradiente producido por el sistema glucosa/sodio del intestino delgado).

    Intercambiador calcio-sodio: Es una proteína de la membrana celular de todas las células eucariotas. Su función consiste en transportar calcio iónico (Ca2+) hacia el exterior de la célula empleando para ello el gradiente de sodio; su finalidad es mantener la baja concentración de Ca2+ en el citoplasma que es unas diez mil veces menor que en el medio externo. Por cada catión Ca2+ expulsado por el intercambiador al medio extracelular penetran tres cationes Na+ al interior celular.1 Se sabe que las variaciones en la concentración intracelular del Ca2+ (segundo mensajero) se producen como respuesta a diversos estímulos y están involucradas en procesos como la contracción muscular, la expresión genética, la diferenciación celular, la secreción, y varias funciones de las neuronas. Dada la variedad de procesos metabólicos regulados por el Ca2+, un aumento de la concentración de Ca2+ en el citoplasma puede provocar un funcionamiento anormal de los mismos. Si el aumento de la concentración de Ca2+ en la fase acuosa del citoplasma se aproxima a un décimo de la del medio externo, el trastorno metabólico producido conduce a la muerte celular. El calcio es el mineral más abundante del organismo, además de cumplir múltiples funciones.

domingo, 2 de septiembre de 2012

Transcripción y traducción de proteínas.

El siguiente es un trabajo acerca de la Transcripción y traducción de proteínas. 02/09/12



Click aquí, para ver y descargar el archivo.



INTRODUCCION
El ARN mensajero es el que lleva la información para la síntesis de proteínas, es decir, determina el orden en que se unirán los aminoácidos
La síntesis de proteínas o traducción tiene lugar en los ribosomas del citoplasma celular. Los aminoácidos son transportados por el ARN de transferencia (ARNt) , específico para cada uno de ellos, y son llevados hasta el ARN mensajero (ARNm), dónde se aparean el codón de éste y el anticodón del ARN de transferencia, por complementariedad de bases, y de ésta forma se sitúan en la posición que les corresponde.
Una vez finalizada la síntesis de una proteína, el ARN mensajero queda libre y puede ser leído de nuevo. De hecho, es muy frecuente que antes de que finalice una proteínaya está comenzando otra, con lo cual, una misma molécula de ARN mensajero, está siendo utilizada por varios ribosomassimultáneamente.
  • Los ARNt desempeñan un papel central en la síntesis de las proteínas
La síntesis proteica tiene lugar en el ribosoma, que se arma en el citosol a partir de dos subunidades riborrucleoproteicas provenientes del nucléolo. En el ribosoma el ARN mensajero (ARNm) se traduce en una proteína, para lo cual se requiere también la intervención de los ARN de transferencia (ARNt). El trabajo de los ARNt consiste en tomar del citosol a los aminoácidos y conducirlos al ribosoma en el orden marcado por los nucleótidos del ARNm, que son los moldes del sistema
La síntesis de las proteínas comienza con la unión entre sí de dos aminoácidos y continúa por el agregado de nuevos aminoácidos -de a uno por vez- en uno extremos de la cadena.
Como se sabe la clave de la traducción reside en el código genético, compuesto por combinaciones de tres nucleótidos consecutivos -o tripletes- en el ARNm. Los distintos tripletes se relacionan específicamente con tipos de aminoácidos usados en la síntesis de las proteínas.
Cada triplete constituye un codón: existen en total 64 codones, 61 de los cuales sirven para cifrar aminoácidos y 3 para marcar el cese de la traducción. Tal cantidad deriva de una relación matemática simple: los cuatro nucleótidos (A, U, C y G)se combinan de a tres, por lo que pueden generarse 64 (43).
Dado que existen más codones, (61) que tipos de aminoácidos (20), casi todos pueden ser reconocidos por más de un codón, por lo que algunos tripletes a como "sinónimos". Solamente el triptófano y la metionina -dos de los aminoácidos menos frecuentes en las proteínas - son codificados, cada uno, por un solo codón
Fig. A-1. Los dibujos ilustran cuatro de los seis codones que codifican al aminoácido leucina (Leu). Los dos de la izquierda se aparean con un mismo anticodón, igual que el par de codones de la derecha. Ello es posible porque la tercera base de los codones suele ser "adaptable ", es decir, puede establecer uniones con una base no complementaria.

Generalmente los codones que representan a un mismo aminoácido se parecen entre sí y es frecuente que difieran sólo en el tercer nucleótido. La baja especificidad de este nucleótido ha llevado a decir que existe una "degeneración" en tercera base de la mayoría de los codones. Resta agregar que el número de codones en el ARNm determina la longitud de la proteína.
  • Existen 31 tipos diferentes de ARNt
Las moléculas intermediarias entre los codones del ARNm y los aminoácidos son los ARNt, los cuales tienen un dominio que se liga específicamente a uno de los 20 arninoácidos y otro que lo hace, específicamente también, con el codón apropiado. El segundo dominio consta de una combinación de tres nucleótidos -llamada anticodón - que es complementaria de la del codón.
Cada tipo de ARNt lleva antepuesto el nombre del aminoácido que transporta. por ejemplo, leucinil-ARNt para el aminoacil-ARNt de la leucina, lisinil-ARNt para el de la lisina, fenilalanil-ARNt para el de la fenilalanina, metionil-ARNt para el de la metionina, etcétera.
Por su lado. El ARNt unido al aminoácido compatible con él se designa aminoacil-ARNtAA, en el que "AA" correspnde a la sigla del aminoácido. Por ejemplo, leucinil-ARNtLeu, lisinil-ARNtlys, fenilalanil-ARNtPhe. metionil-ARNtMet, etcétera.
Si bien teóricamente pueden existir 61 tipos de ARNt diferentes, sólo hay 31. El déficit se resuelve por la capacidad que tienen algunos ARNt de reconocer a más de un codón. Lo logran porque sus anticodones suelen poseer la primera base "adaptable", es decir, que puede unirse con una base no complementaria situada en la tercera posición del codón (recuérdese la "degeneración" de esta base).
Así, la G en la primera posición del anticodón puede aparearse tanto con una C -es lo habitual - como con una U del codón (fig. A-1). Similarmente, la U en la primera posición del anticodón puede hacerlo con una A -es lo habitual - o con una G. Por otra parte, la inosina (I) -una de las bases inusuales se encuentra en la primera posición del anticodón en varios ARNt y es capaz de aparearse con cualquier base (excepto con una G) localizada en la tercera posición del codón.
  • El codón de iniciación es el triplete AUG
El primer codón que se traduce en los ARNm es siempre el triplete AUG. cuya información codifica al aminoácido metionina (fig. A-2). Por lo tanto, este codón cumple dos funciones: señala el sitio de comienzo de la traducción -caso en el cual recibe el nombre de codón de iniciación -, y cuando se halla en otras localizaciones en el ARNm codifica a las metioninas del interior de las moléculas proteicas.
Al especificar el primer aminoácido de la proteína, el codón AUG de iniciación determina el encuadre de los sucesivos tripletes, lo que asegura la síntesis correcta de la molécula. Tómese como ejemplo la secuencia AUGGCCUGUAACGGU. Si el ARNm es traducido a partir del codón AUG, los codones
siguientes serán GCC, UGU, AAC y GGU, que codifican, respectivamente, a los aminoácidos alanina, cisteina ,asparagina y glicina. En cambio, si se omitiera la A del codón de iniciación, el encuadre de los tripletes sería el siguiente: UGG, CCU, GUA y ACG, los cuales se traducen en los aminoácidos triptófano, prolina, valina y treonina, respectivamente.
Algo semejante ocurriría si también se omitiera la U, pues resultaría un tercer tipo de encuadre: GGC, CUG, UAA y CGC. En este caso, después de codificar los dos primeros codones a los aminoácidos glicina y leucina, la traducción se detendría, ya que UAA es un codón de terminación.
Fig. A-2
  • Los aminoácidos se ligan por medio de uniones peptídicas
La unión de los aminoácidos entre sí para construir una proteína se produce de modo que el grupo carboxilo de un aminoácido se combina con el grupo a amínoácido siguiente, con pérdida de una molécula de agua H2O y recordemos que esa combinación se llama unión peptídica.
Cualquiera que sea su longitud, la proteína mantiene el carácter anfotérico de los aminoácidos aislados, ya que contiene un grupo amino libre en uno de sus extremos y un grupo carboxilo en el otro extremo. La proteína se sintetiza a partir de extremo que lleva el grupo amino libre. Ello se corresponde con la dirección 5´ ® 3´ usada para la traducción del ARNm, la misma con que el ADN se transcribe 
Antes de describir los procesos que dan lugar a la síntesis de las proteínas analizaremos cómo arriban los ARNm al citoplasma, qué configuración poseen los ARNt y cuál es la estructura de los ribosomas.
  • Los ARNm arribados al citoplasma se conectan con ríbosomas
Los transcriptos primarios de los ARNm se hallan combinados con diversas proteínas, con las que forman las nueleoproteínas heterogéneas nucleares o RNPhn.. No obstante, muchas de esas proteínas se desprenden de los ARNm a medida que éstos abandonan el núcleo.
Los ARNm salen hacia el citoplasma por los poros de la envoltura nuclear. Ya en el citosol, cada ARNm se combina con nuevas proteínas y con ribosomas, lo que lo habilita para ejercer su función codificadora durante la síntesis proteica. Entre las proteínas se encuentra la llamada CBP (por cap binding protein), que se combina con el cap en el extremo 5´ del ARNm. Su papel será analizado más adelante.
Algunos ARNm se localizan en sitios prefijados en el citoplasma, de modo que las proteínas que codifican se sintetizan y se concentran en esos sitios. Un ejemplo es el ARNm de la actina, que se sitúa en la zona periférica de las células epiteliales donde se deposita la mayor parte de la actina .
El extremo 5' de los ARNm contiene una secuencia de alrededor de 10 nucleótidos previa al codón de iniciación -entre éste y el cap - que, como es lógico, no se traduce (fig. A-2). En algunos ARNm esta secuencia participa en el control de 1a traducción y en otros regula la estabilidad del ARNm, es decir, su supervivencia.
Otra secuencia especial del ARNm, de hasta miles de nucleótidos, suele hallarse después del codón de terminación. entre éste y la poli A . Tiene por función controlar la supervivencia del ARNm.
  • Las moléculas de los ARNt adquieren una forma característica
Hemos visto que los codones del ARNm no seleccionan a los aminoácidos directamente y que la traducción de los ARNM en proteínas depende de un conjunto de moléculas intermediarias -los ARNt- que actúan como adaptadores, ya que discriminan tanto a los codones del ARNm como a los aminoácidos compatibles con ellos.
Así la función básica de los ARNt es alinear a los aminoácidos siguiendo el orden de los codones para poder cumplir con sus funciones, los ARNt ,adquieren una forma característica semejante a un trébol de cuatro hojas (fig. A-3). Los cuatro brazos se generan por la presencia en los ARNt de secuencias de 3 a 5 pares de nuelcótidos complementarios, los cuales se aparean entre sí como los nucleótidos de las dos cadenas del ADN.
En la punta de uno de los brazos confluyen los extremos 5' y 3´ del ARNt. El extremo 3´ es más largo, de modo que sobresale el trinucleótido CCA que fue incorporado durante el procesamiento. Este brazo se llama aceptador porque a él se liga el aminoácido, que se une a la A del CCA.
Los tres brazos restantes poseen en sus extremos secuencias de 7 a 8 nucleótidos no apareados, -con
forma de asas -, cuyas denominaciones derivan de los nucleótidos que las caracterizan. Una de ellas contiene el triplete de nueleótidos del anticodón, por lo que su composición varía en cada tipo de ARNt. Otra, en virtud de que contiene dihidrouridinas (D), se denomina asa D. La tercera se conoce como asa T, por el trinucleótido Ty C que la identifica. La letra T simboliza a la ribotimidina y la y a la seudouri dina.
Entre el asa T y el anticodón existe un asa adicional, llamada variable porque su longitud difiere en los distintos ARN de transferencia.
Un plegamiento ulterior en el ARNt hace que deje de parecerse a un trébol de cuatro hojas y adquiera la forma de la letra L (fig. A-4). El cambio se debe a que se establecen apareamientos inusuales entre algunos nueleótidos, como la combinación de un nucleótido con dos a la vez.
Formada la L, las asas D y T pasan a la zona de unión de sus dos ramas y el brazo aceptador y el triplete de bases del anticodón se sitúan en las puntas de la molécula (fig. A-4).
FIGURA A-3­
FIGURA A-4­
  • Una aminoacil-ARNt sintetasa une el aminoácido al ARNt
El aminoácido se liga a su correspondiente ARNt por la acción de una enzima llamada aminoacil-ARNt sintetasa, que cataliza la unión en dos pasos.
Durante el primero, el aminoácido se liga a un AMP , con el cual forma un aminoacil AMP. Por ejemplo leucinil –AMP , lisinil AMP, fenilalanil AMP, metionil-AMP, etc.. Dado que el AMP deriva de la hidrólisis de un ATP , se libera pirofosfato (PP) y energía , que también pasa al aminoacil- AMP
AA + ATP® AA-AMP + PP
En el segundo paso esa energía es utilizada por la aminoacil ARNt sintetasa para transferir el aminoácido del aminoacil –AMP a la A del brazo aceptador del ARNt compatible, con lo cual se forma una molécula esencial para la síntesis proteica: el aminoacil-ARNtAA que reconoce el codón complementario en el ARNm.
AA-A + ARNt ® ( AMINOACIL SINTETASA)® AA-ARNtAA + AMP
Debe señalarse que la energía del ATP usada en la primera reacción queda depositada en la unión química entre el aminoácido y la A del trinucleótido CCA.
  • Existen 20 amínoacil – ARNt sintetasas diferentes
Existen 20 aminoacil-ARNt sintetasas diferentes, cada una diseñada para reconocer a un aminoácido y al ARNt compatible con él. Ambos reconocimientos permiten que cada uno de los 31 tipos de ARNt
se ligue sólo a uno de los 20 aminoácidos usados en la síntesis proteica. Ello es posible porque cada aminoacil ARNt sintetasa identifica al ARNt por el anticodón, la parte más específica del ARNt (Fig A-3). No obstante, en los ARNt existen otras señales que son reconocidas por la enzima, generalmente tramos de nucleótidos cercanos al anticodón.
Como es obvio, la existencia de 11 clases de ARNt hace que algunos aminoácidos sean reconocidos por más de un ARNt.
Uno de los ARNt redundantes es el llamado ARNt iniciador o ARNt[i], pues transporta a la metionina destinada exclusivamente al codón AUG de iniciación (FIG A-9). Es muy probable quecerca de ese codón existan señales que diferencien al metionil-ARNt[i]met –portador de la metionina dirigida a él- de los metionil ARNtmet comunes, portadores de las metioninas destinadas a los restantes codones AUG del ARNm.
  • Los ribosomas están compuestos por dos subunidades
Los mecanismos para alinear a los aminoacil ARNtAA de acuerdo con el orden de los codones del ARNm son algo complicados. Requieren de los ribosomas cuya primera tarea es localizar al codón AUG de iniciación y acomodarlo correctamente para que el encuadre de ese triplete y el de los siguientes sea el adecuado.
Luego el ribosoma se desliza hacia el extremo 3´del ARNm y traduce a los sucesivos tripletes en aminoácidos. Estos son traídos – de a uno por vez – por los respectivos ARNt. Las reacciones que ligan a los aminoácidos entre sí - es decir , las uniones peptídicas - se producen dentro del ribosoma . Finalmente, cuando el ribosoma arriba al codón de terminación – en el extremo 3´del ARNm – cesa la síntesis proteica y se libera la proteína. Como podemos notar, los ribosomas constituyen las "fábricas de las proteínas"
Cada ribosoma está compuesto por dos subunidades - una mayor y otra menor – identificadas con las siglas 40S y 60S respectivamente (los números hacen referencia a los coeficientes de sedimentación de las subunidades, es decir a las velocidades con que sedimentan cuando son ultracentrifugadas, la 60S migra más rápido al fondo del tubo).
En la subunidad menor algunas proteínas forman dos áreas - una al lado de la otra – denominadas sitio P (por peptidil) y sitio A (por aminoacil).
Por otro lado en la subunidad mayor las proteínas ribosómicas formarían un túnel por el que saldría la cadena polipeptídica a medida que se sintetiza
Las etapas de la síntesis de proteínas
La síntesis de las proteínas se divide en tres etapas, llamadas de iniciación , de alargamiento y de terminación (fig. A-9).
  • El comienzo de la síntesis proteica requiere de varios factores de iniciación
La etapa de iniciación es regulada por proteínas citosólicas denominadas factores de iníciación (IF), que provocan dos hechos separados pero concurrentes , uno en el extremo 5´del ARNm y otro en la subunidad menor del ribosoma
El primer proceso involucra al cap y a una secuencia de nucleótidos aledaña, localizada entre el cap y el codón de iniciación . Estas partes reconocidas por el factor IF-4, que se liga a ellas sí al ARNm se proteína CBP . La conexión del IF-4 con el ARNm insume energía que es provista por un ATP.
En el segundo proceso, el metioníl-ARNt[i]met se coloca en el sitio P de la subunidad menor del ribosoma, reacción que requiere el factor IF-2 y la energía de un GTP.
Logrados ambos acondicionamientos, otro factor de iniciación, el IF-3, con la ayuda del IF-4 coloca el extremo 5´ del ARNm sobre una de las caras de la unidad menor del ribosoma, la que posee los sitios P y A.
De inmediato la subunidad menor se desliza por el ARNm y detecta al codón de AUG de iniciación, que se coloca, en el sitio P . Como es lógico , el segundo codón del ARNm queda colocado al lado, es decir en el sitio A.
Entre tanto, el metioril-ARNt[i]met ,' ubicado en el sitio P de la subunidad menor, se une al codón AUG de iniciación mediante su anticodón CAU (UAC¬ ). El acoplamiento correcto entre estos dos tripletes es imprescindible para asegurar el encuadre normal de los siguientes codones del ARNm en los sitios P y A del ribosoma.
La etapa de iniciación concluye cuando la subunidad menor se combina con la subunidad mayor y se forma el ribosoma. En él se encuentran los primeros dos codones del ARNm: en el sitio P el codón AUG de iniciación -unido al metionilARNt[i]met- y en el sitio A el codón que le sigue.
La unión entre sí de las dos subunidades ribosómicas se produce luego del desprendimiento del IF-2 y del IF-3, lo cual es mediado por el factor IF-5.
  • El alargamiento de la cadena proteica es promovido por factores de elongación
La etapa de alargamiento comienza cuando al sitio A del ribosoma se acerca otro aminoacil-ARNtAA, compatible con el segundo codón del ARNm, con el cual se une. La reacción es mediada por un factor de elongación llamado EF-1 y consume energía, que es aportada por un GTP.
Al quedar el aminoacil-ARNtAA cerca del metionil-ARN[t]met. la metionina localizada en el sitio P, al tiempo que se desacopla del. ARNt[i], se liga - mediante una unión peptidica - al aminoácido ubicado en el sitio A. Se forma así un dipeptidil-ARNt, que continúa ubicado en el sitio A. Su permanencia en este sitio es breve, en seguida veremos por qué.
La unión peptídica es catalizada por la subunidad mayor del ribosoma. Debe agregarse que la energía requerida para consumar esa unión proviene de la ruptura de otra unión química , aquella que liga al aminoácido con la adenina en el brazo aceptador del ARNt. Como en el caso del metionil – ARNt [i]met, la ruptura química tiene lugar siempre en el sitio P.
Entre tanto, fuera del ribosoma, esperando para ingresar, se encuentra el tercer codón del ARNm. Aborda el ribosoma cuando el ARNm se corre tres nucleótidos en dirección de su extremo 5´. Este proceso – llamado traslocación – es mediado por el el factor de elongación EF-2 y también consume energía ahora aportada por un GTP.
Como vemos, desde el punto de vista energético la síntesis proteica es bastante costosa, ya que por cada aminoácido que se incorpora se consumen dos GTP y un ATP, el último gastado durante 1a síntesis del aminoacil-ARNtAA
El corrimiento del ARNm hace que el codón de iniciación sea desalojado del sitio P sitio P -y, por consiguiente, del ribosoma- el segundo codón se mude del sitio A al sitio P y el tercer codón ingrese en el sitio A vacante. Lógicamente el corrimiento de los codones desplaza también a los ARNt , por lo que el ARNt[i] sale del ribosoma -no tarda en desprenderse del codón de iniciación – y el dipéptido pasa del sitio A al sitio P.
Mientras tanto, un tercer aminoacil-ARNtAA ingresa en le ribosoma , se acomoda en el sitio A y su anticodón se une al tercer codón de ARNm, otra vez por la intervención del EF-1. Debe señalarse que el EF-1 actúa después que el EF-2 se retira del ribosoma, y viceversa.
El paso siguiente comprende la formación de una unión peptídica entre el dipéptido y el aminoácido del tercer aminoacil –ARNt AA. Esta unión peptídica, ahora entre e dipéptido y el aminoácido del tercer aminoacil-ARNtAA. Esta unión peptídica genera un tripeptidil –AARNt, que permanece en el sitio P hasta la próxima translocación del ARNm.
Los procesos citados se repiten de forma sucesiva codón tras codón ; así , en el cuarto paso se forma un tetrapeptidil ARNt y luego peptidil - ARNt cada vez más largos , que se traslocan del sitio A al P conforme se producen las uniones peptídicas. Se calcula que se agregan a la cadena, en promedio, cinco aminoácidos por segundo.
Debido a que con cada traslocación se corren tres nucleótidos del ARNm , su extremo 5´se aleja progresivamente del ribosoma y su extremo 3´se acerca a él en igual medida. Cuando el ribosoma se ha alejado del extremo 5´del ARNm unos 90 nucleótidos, en el codón de iniciación se acomoda un nuevo ribosoma, lo cual da inicio a la síntesis de otra cadena proteica. Esto se repite varias veces .
  • La síntesis proteica concluye cuando el ribosoma alcanza el codón de terminación
La etapa de terminación determina la conclusión de la síntesis de la proteína cuando el sitio A del ribosoma es abordado por el codón de terminación del ARNm (UUA, UGA o UAG, indistintamente). Ello deja al sitio A sin el esperado aminoacil-ARNtAA, aunque pronto es ocupado por un factor de terminación llamado eRF (eucaryotic releasing factor), que sabe reconocer a los tres codones de terminación.
En síntesis la terminación de la cadena polipeptídica está señalada por el ARNm mediante un codón que no especifica la incorporación de ningún aminoácido . Ese codón de terminación puede ser UUA, UGA o UAG, y sobre él no se une ningún ARNt. En cambio, es reconocido por dos proteínas llamadas factores de liberación (eRF). Cuando esto sucede, la proteína terminada se libera del último ARNt, que también se separa del ARNm. Por último también se disocian las subunidades ribosómicas. Todos estos elementos pueden ser reutilizados en una nueva síntesis.
RESUMEN
Tres etapas en la síntesis de proteínas. a) Iniciación. La subunidad ribosómica más pequeña se une al extremo 5´ de una molécula de ARNm. La primera molécula de ARNt, que lleva el aminoácido modificado fMet, se enchufa en el codón iniciador AUG de la molécula deARNm. La unidad ribosómica más grande se ubica en su lugar, el ARNt ocupa el sitio P (peptidico). El sitio A (aminoacil) está vacante. El complejo de iniciación está completo ahora.
b) Alargamiento. Un segundo ARNt con su aminoácido unido se mueve al sitio A y su anticodón se enchufa en el mRNA. Se forma un enlace peptidico entre los dos aminoácidos reunidos en el ribosoma. Al mismo tiempo, se rompe el enlace entre el primer aminoácido y su ARNt. El ribosoma se mueve a lo largo de la cadena de ARNm en una dirección 5´ a 3´ y el segundo ARNt, con el dipéptido unido se mueve al sitio P desde el sitio A, a medida que el primer ARNt se desprende del ribosoma. Un tercer ARNt se mueve al sitio A y se forma otro enlace peptÍdico. La cadena peptídica naciente siempre está unida al tRNA que se está moviendo del sitio A al sitio P, y el ARNt entrante que lleva el siguiente aminoácido siempre ocupa el sitio A. Este paso se repite una y otra vez hasta que se completa el polipéptido. c) Terminación. Cuando el ribosoma alcanza un codón de terminación (en este ejemplo UGA), el polipéptido se escinde del último ARNt y el ARNt se desprende del sitio P. El sitio A es ocupado por el factor de liberación que produce la disociación de las dos subunidades del ribosoma
.
APLICACIONES
Dos temas médicos vinculados con la actividad de los ribosomas
Al ser invadidas por bacterias, las células de algunos organismos inferiores elaboran sustancias llamadas antibióticos para defenderse de la infección. En muchos casos los antibióticos logran sus objetivos interfiriendo la síntesis proteica en los ribosomas de las bacterias, lo que las mata. Por ejemplo, el cloranfenicol impide las uniones peptídicas, la estreptomicina afecta el inicio de la traducción y distorsiona la fidelidad de la síntesis, la eritromicina bloquea la translocación del ARNm, la tetraciclina no permite que los aminoacil-ARNtAA ingresen en el sitio A, la kirromiicina inhibe la actividad de los factores de elongación y la puromicina usurpa el sitio A del ribosoma, de modo que la cadena peptídica se liga al antibiótico y no a un aminoacil-ARNtAA, lo que interrumpe su síntesis.
La medicina ha trasladado estos efectos a otros escenarios biológicos, particularmente al organismo humano. Así, cuando determinadas bacterias lo infectan, éstas pueden ser destruidas mediante la administración de antibióticos.
Debe advertirse que la puromicina afecta también a los ribosomas de las células eucariotas, y por ello su uso farmacológico es muy restringido. Por su parte, el cloranfenicol, la eritromicina, la tetraciclina y la kirromicina, si bien interfieren levemente la síntesis proteica en los ribosomas eucarióticos citosólicos, afectan mucho más la de los ribosomas de las mitocondrias , lo cual reafirma la teoría endosimbiótica.
Otro tema médico vinculado con los ribosomas corresponde al mecanismo de acción de la toxina diftérica , que ingresa en la célula por endocitosis y ribosila al factor de elongación EF-2 , lo cual lo anula. Ello conduce en poco tiempo a la muerte.

sábado, 1 de septiembre de 2012

Transporte a travez de membrana y mapa Conseptual.

El siguiente es un mapa conceptual de los diferentes tipos de transporte a travez de la membrana célular.

Mapa Conseptual sobre los diferentes tipos de transporte a travez de la membrana.

Difusión simple

Una membrana semipermeable separa dos compartimentos con concentraciones distintas de un soluto: con el paso del tiempo, el soluto difundirá hasta alcanzar el equilibrio a ambos lados.
Como se mencionó anteriormente, la difusión pasiva es un fenómeno espontáneo puesto que suceden incrementando la entropía del sistema, y disminuyendo la energía libre. No requiere de la intervención de proteínas de membrana, pero sí de las características de la sustancia a transportar y de la naturaleza de la bicapa. Para el caso de una membrana fosfolipídica pura, la velocidad de difusión de una sustancia depende de su:
  • gradiente de concentración,
  • hidrofobicidad,
  • tamaño,
  • carga, si la molécula posee carga neta.
Estos factores afectan de diversa manera a la velocidad de difusión pasiva:
  • a mayor gradiente de concentración, mayor velocidad de difusión,
  • a mayor hidrofobicidad, esto es, mayor coeficiente de partición, mayor solubilidad en lípido y por tanto mayor velocidad de difusión,
  • a mayor tamaño, menor velocidad de difusión,
  • dado un potencial de membrana, es decir, la diferencia de potencial entre la cara exoplasmática y la endoplasmática de la membrana, y un gradiente de concentración se define un gradiente electroquímico que determina las direcciones de transporte energéticamente favorables de una molécula cargada, dependiendo de la naturaleza de ésta y del signo del potencial, si bien la mayor parte de las células animales poseen carga negativa en su exterior.
La difusión simple a través de la membrana lipídica muestra una cinética de no saturación, esto es, que, puesto que la tasa neta de entrada está determinada sólo por la diferencia en el número de moléculas a cada lado de la membrana, la entrada aumenta en proporción a la concentración de soluto en el fluido extracelular. Esta característica distingue la difusión simple de los mecanismos de penetración por canales de transporte mediado.6

Difusión facilitada

La difusión facilitada involucra el uso de un proteína para facilitar el movimiento de moléculas a través de la membrana. En algunos casos, las moléculas pasan a través de canales con la proteína. En otros casos, la proteína cambia su forma, permitiendo que las moléculas pasen a través de ella.
Bajo el mismo principio termodinámico que en el caso de la difusión simple, es decir, que el soluto a transportar lo hace a favor de gradiente, la difusión facilitada opera de modo similar, pero está facilitada por la existencia de proteínas canal, que son las que facilitan el transporte de, en este caso, agua o algunos iones y moléculas hidrófilas. Estas proteínas integrales de membrana conforman estructuras en forma de poro inmersas en la bicapa, que dejan un canal interno hidrofílico que permite el paso de moléculas altamente lipófobas como las mencionadas anteriormente. La apertura de este canal interno puede ser constitutiva, es decir, continua y desregulada, en los canales no regulados, o bien puede requerir una señal que medie su apertura o cierre: es el caso de los canales regulados.

Transporte activo y cotransporte

En él se efectúa un transporte en contra del gradiente de concentración o electroquímico y, para ello, las proteínas transportadoras implicadas consumen energía metabólica (comúnmente adenosín trifosfato). La hidrólisis del compuesto que actúa como moneda energética puede ser muy evidente, como en el caso de los transportadores que son ATPasas, o puede tener un origen indirecto: por ejemplo, los cotransportadores emplean gradientes de determinados solutos para impulsar el transporte de un determinado compuesto en contra de su gradiente, a costa de la disipación del primer gradiente mencionado. Pudiera parecer que en este caso no interviene un gasto energético, pero no es así puesto que el establecimiento del gradiente de la sustancia transportada colateralmente al compuesto objetivo ha requerido de la hidrólisis de ATP en su generación mediante unos determinados tipos de proteínas denominados bombas. Por ello, se define transporte activo primario como aquél que hidroliza ATP de forma directa para transportar el compuesto en cuestión, y transporte activo secundario como aquél que utiliza la energía almacenada en un gradiente electroquímico.
El descubrimiento de la existencia de este tipo de transportadores se produjo al estudiar cinéticamente la transferencia de moléculas a través de las membranas: para algunos solutos, se observó que la velocidad de entrada alcanza una meseta a partir de cierta concentración externa a partir de la cual no se produce un incremento significativo de velocidad de captación, esto es, surge una respuesta tipo curva logística. Se interpretó que el transporte aquí se produce por la formación de un complejo sustrato-transportador, conceptualmente idéntico al complejo enzima-sustrato de la cinética enzimática. Por ello, cada proteína transportadora posee una constante de afinidad por el soluto que es igual a la concentración del soluto cuando la velocidad de transporte es la mitad de su valor máximo (equivaldría, para el caso de un enzima, a la constante de Michaelis-Menten).
Algunos rasgos importantes del transporte activo, además de su capacidad de intervenir aun en contra de gradiente, su cinética y el empleo de ATP, son: su elevado grado de selectividad y su facilidad de inhibición farmacológica selectiva.

Transportadores

Uniporte, simporte y antiporte de moléculas a través de transportadores de membrana.
Un transportador puede movilizar diversos iones y moléculas. Según la direccionalidad, se distinguen:
  • antiportadores: aquellos que transportan un tipo de molécula en contra de su gradiente al mismo tiempo que desplazan uno o más iones diferentes a favor del suyo, siendo ambos gradientes contrapuestos.
  • simportadores: los que desplazan el compuesto a transportar en contra de su gradiente acoplando este trasiego al desplazamiento de uno o más iones diferentes a favor del suyo, que, en este caso, es equivalente al de la molécula a transportar.
Ambos reciben el nombre de cotransportadores.

Bombas

Diagrama simplificado de una bomba de sodio.
Una bomba es una proteína que hidroliza ATP para transportar a través de una membrana un determinado soluto a fin de generar un gradiente electroquímico que confiera unas características de potencial a ésta. Dicho gradiente posee un interés por sí mismo para la definición del estado de la célula, como es el potencial de Nernst, pero interviene activamente en el transporte de sustancias a través de la membrana, que es el tema aquí tratado, puesto que aporta un aumento de entropía al sistema en caso de cotransporte de sustancias que se encuentran en trasiego en contra de su gradiente.
Una de las bombas de mayor relevancia en células animales es la bomba sodio-potasio, que opera mediante el mecanismo siguiente:
  1. Unión de tres Na+ a sus sitios activos.
  2. Fosforilación de la cara citoplasmática de la bomba que induce a un cambio de conformación en la proteína. Esta fosforilación se produce por la transferencia del grupo terminal del ATP a un residuo de ácido aspártico de la proteína.
  3. El cambio de conformación hace que el Na+ sea liberado al exterior.
  4. Una vez liberado el Na+, se unen dos moléculas de K+ a sus respectivos sitios de unión de la cara extracelular de la proteína.
  5. La proteína se desfosforila produciéndose un cambio conformacional de esta, lo que produce una transferencia de los iones de K+ al citosol.

Selectividad de membrana

Puesto que la característica primordial del transporte a través de una membrana biológica es la selectividad de ésta y su subsiguiente actuación como barrera específica para determinadas sustancias, la fisiología subyacente de este fenómeno ha sido estudiada profusamente. Clásicamente se ha dividido el estudio de esta propiedad en lo referente a electrolitos y a no electrolitos.

Selectividad para electrolitos

Los canales iónicos definen un diámetro interno que permite el paso de pequeños iones de forma más o menos específica. Puesto que el tamaño del ion está relacionado con la especie química, se podría asumir a priori que un canal cuyo diámetro de poro fuera suficiente para el paso de un ion permitiría asimismo el trasiego de otros de menor tamaño, cosa que no sucede en la mayoría de los casos. Existen dos características ajenas al tamaño que son importantes en la determinación de la selectividad de los poros de la membrana: la facilidad de deshidratación e interacción con las cargas del interior del poro.
Para que un ion penetre en el poro, debe disociarse de las moléculas de agua que lo recubren en sucesivas capas de solvatación. La tendencia a deshidratarse, o la facilidad para hacerlo, está relacionada con el tamaño del ion: los iones grandes lo hacen con más facilidad que los pequeños, por lo que un poro con centros polares débiles admitirá preferentemente iones grandes, antes que pequeños.
Cuando el interior del canal está tapizado de grupos polares, procedentes de las cadenas laterales de sus aminoácidos componentes, la interacción del ion deshidratado con estos centros puede ser más importante que la facilidad de deshidratación para conferir la especificidad del canal. Por ejemplo, un canal revestido de histidinas y argininas, con grupos cargados positivamente, repelerá de forma selectiva a los iones cargados con el mismo signo, pero facilitará el paso de los cargados negativamente. Además, en este caso, los iones más pequeños pueden interactuar de forma más cercana por cuestiones estéricas, lo cual incrementa en mucho las interacciones carga-carga y, por tanto, exagera el efecto.

Selectividad para no electrolitos

Los no electrolitos, sustancias que generalmente son hidrofóbicas y lipofílicas, suelen atravesar la membrana por disolución en la bicapa lipídica y, por tanto, mediante difusión simple. La facilidad para difundir en este caso es dependiente del coeficiente de partición K, por lo general, si bien existen algunos no electrolitos que atraviesan la membrana por transporte mediado por un transportador.
En el caso de que el no electrolito esté parcialmente cargado, es decir, sea más o menos polar, como es el caso del etanol, metanol o urea, se permite el paso a través de la membrana mediante canales acuosos inmersos en la membrana. Es interesante recalcar que no existe un mecanismo de regulación efectivo que establezca barreras a este transporte, lo que implica una vulnerabilidad intrínseca de las células a la penetración de estas moléculas.

1er Tarea de Fisiología Basica.

A continuación un mapa mental sobre las constantes fisiologicas y un mapa conceptual sobre los elementos quimicos que conforman el cuerpo humano.

1er tarea de Fisiología Basica.

Mapa conceptual Elementos Químicos.

Mapa mental de las constantes fisiologicas.

¿Qué es la Fisiología?

La fisiología (del griego physis, naturaleza, y logos, conocimiento, estudio) es la ciencia que estudia las funciones de los seres multicelulares (vivos). Es una de las ciencias más antiguas del mundo. Muchos de los aspectos de la fisiología humana están íntimamente relacionadas con la fisiología animal, en donde mucha de la información hoy disponible ha sido conseguida gracias a la experimentación animal, pero sobretodo gracias a las autopsias. La anatomía y fisiología son campos de estudio estrechamente relacionados en donde la primera hace hincapié en el conocimiento de la forma mientras que la segunda pone interés en el estudio de la función de cada parte del cuerpo, siendo ambas áreas de vital importancia en el conocimiento médico general.

Homeostasis

La homeostasia, (del griego homoios que significa similar, y stasis, en griego στάσις, posición, estabilidad) es un término que usan los fisiólogos para describir y explicar la persistencia de las condiciones estáticas o constantes en el medio interno. Esencialmente, todo órgano y tejido en el cuerpo llevan a cabo funciones que ayudan a mantener estas condiciones constantes. Desde los pulmones que captan el oxígeno, hasta los riñones que mantienen constantes las concentraciones de iones en el cuerpo, cada órgano y célula aporta una función que se suma a las funciones totales de los demás sistemas que permiten la vida del ser humano.

El medio interno

El 70% del cuerpo humano está formado de líquido y la mayor parte de este líquido se encuentra dentro de las células (líquido intracelular); de cualquier modo, alrededor de un tercio se encuentra en los espacios por fuera de las células y compone lo que conocemos como líquido extracelular. A diferencia del primero, este líquido se encuentra siempre en movimiento en el organismo. Es mezclado rápidamente por la circulación de la sangre y por difusión entre la misma y los líquidos tisulares, y en el líquido extracelular se encuentran los iones y nutrientes que se requieren para que las células conserven su función. Prácticamente, todas las células viven rodeadas de líquido extracelular, por lo que a este líquido se le conoce como medio interno del cuerpo o milieu intérieur como le llamó el fisiólogo Claude Bernard.

Supervivencia de células

Las células se desarrollan y llevan a cabo sus funciones, tanto más si estas son especializadas, mientras tengan a mano en el medio interno las concentraciones adecuadas de iones, oxígeno, glucosa, diversos aminoácidos y otras sustancias que le sirven como bloques de nutrición.

Elementos fisiológicos

El cuerpo está formado por células, estas a su vez forman tejidos, los tejidos a su vez forman órganos, estos forman aparatos y, a su vez estos componen los sistemas que mantienen el cuerpo vivo.

Sistema Estudio clínico Fisiología
Human brain NIH.jpg El sistema nervioso consiste en el sistema nervioso central (el que consta del cerebro y la médula espinal) y el sistema nervioso periférico. El cerebro es el órgano del pensamiento, las emociones, el procesamiento de las información sensorial y muchos otros aspectos que coordinan la función integrada del organismo. Los ojos, oídos, lengua, piel y nariz, reúnen la información sensorial proveniente del medio ambiente. neurología (enfermedad), psiquiatría (comportamiento de la mente), oftalmología (visión), otorrinolaringología (audición, gusto y olfato) neurociencias & neurofisiología
Skelett-Mensch-drawing.jpg El sistema musculoesquelético consiste en el esqueleto humano (que incluye huesos, ligamentos, tendones, cartílagos, bolsas sinoviales y mecanismos de articulación en general) con la musculatura. Este sistema nos da nuestra estructura mecánica básica, además de la capacidad de movimiento. Además de la función básica de sostén y movimiento, los huesos largos en los adultos mayores presentan médula ósea, la que tiene por función la formación de glóbulos rojos (eritropoyesis)).Además, los huesos juegan un papel fundamental en el metabolismo del calcio, al ser el mayor reservorio de fósforo y calcio del organismo. osteología (esqueleto), ortopedia (desorden óseo) fisiología celular, fisiología musculoesquelética
Diagram of the human heart (cropped).svg El sistema circulatorio consiste en el corazón y las vías sanguíneas ( arterias, venas y capilares). El corazón tiene por función el bombeo de la sangre a través de las vías circulatorias con el fin de que ésta tenga la capacidad de llegar a irrigar cada uno de los tejidos del organismo, proveyendo así de oxígeno, "combustible", información hormonal, productos de desecho y la llegada de las células del sistema inmune. La sangre consiste en un fluido con proteínas (plasma) junto a células sanguíneas (elementos figurados) cardiología (corazón), hematología (sangre) Fisiología cardiaca
Heart-and-lungs.jpg El sistema respiratorio consiste en la nariz, faringe, laringe, árbol bronquial y los pulmones. El sistema se encarga del intercambio gaseoso para proveer al organismo el oxígeno necesario para el metabolismo intermediario, además de eliminar el dióxido de carbono producido por este último y controlar el pH sanguíneo para mantenerlo en condiciones fisiológicamente aptas. neumología. fisiología respiratoria
Stomach colon rectum diagram.svg El sistema gastrointestinal consiste en la boca, esófago, estómago, intestino delgado, intestino grueso y recto, además de las glándulas anexas que cooperan en la digestión de los alimentos: hígado y vesícula biliar(sales biliares), páncreas (secreción exocrina) y las glándulas salivales.El objetivo de la digestión es el convertir los alimentos en sustancias que puedan ser aprovechadas por el organismo, además de producir la eliminación de los residuos tóxicos o no-metabolizables por el cuerpo gastroenterología fisiología gastrointestinal
Skin-no language.PNG El sistema integumentario consiste en las porciones que cubren el cuerpo (la piel), incluyendo, pelo y uñas así como también glándulas sudoríparas y glándulas sebáceas. La piel provee la estructura, sostén y protección para otros órganos, pero también ofrece una gran área de contacto con el medio externo y de vías sensitivas para la detección de calor, dolor o presión. dermatología fisiología celular, fisiología de la piel
Gray1120.png El sistema urinario consiste en los riñones, uréteres, vejiga urinaria y la uretra. Es el encargado de filtrar la sangre para producir orina, la que consiste en agua junto a diversas sustancias del desecho metabólico celular. nefrología (función), urología (enfermedades estructurales) fisiología renal
Male anatomy.png El sistema reproductivo consiste en las gónadas y los órganos sexuales externos e internos. El sistema reproductivo produce gametos ( en testículos y ovarios según sea hombre y mujer respectivamente), además de producir hormonas y proporcionar un ambiente necesario para mantener en condiciones óptimas el desarrollo de estos gametos. En el caso del sexo femenino se proporciona además un ambiente apto para el desarrollo del embrión (útero) ginecología (mujeres), andrología (hombres), sexología (aspectos del comportamiento) embriología (aspectos del desarrollo) fisiología reproductiva
PBNeutrophil.jpg El sistema inmune consiste en los glóbulos blancos, el timo, ganglios linfáticos y los conductos linfáticos, los cuales también son parte del sistema linfático. Otros órganos que participan dentro del sistema inmune son el bazo y la médula ósea, en donde se produce, respectivamente, la recirculación y la producción de células inmunes. El sistema inmune es el encargado de generar una respuesta de defensa ante organismos externos que podrían conllevar al desarrollo de una enfermedad o de un posible daño a nivel tisular del organismos. Dentro de los mecanismos de defensa existen dos tipos de respuesta, innata y adaptativa, la segunda dependiente de la primera y en donde existen variadas interacciones para reaccionar de la mejor forma posible según sea el agente patógeno. inmunología immunología
Illu endocrine system.png El sistema endocrino consiste en las principales glándulas endocrinas: hipófisis, tiroides,glándula suprarrenal,paratiroides, páncreas y gónada, aunque la secreción de hormonas también sea realizada por diversos tejidos de manera local, así como también existen unas cuantas hormonas producidas a nivel del riñón y del hígado. Las hormonas endocrinas sirven como mecanismo de comunicación entre las diversas partes del cuerpo, teniendo en general un predominio de cefálico hacia caudal, es decir, la hipófis es la glándula endocrina con mayor poder de acción a nivel del cuerpo humano, desencadenando diversas respuestas a nivel de muchos órganos blancos. endocrinología endocrinología
Esta clasificación por sistemas es realizado de manera arbitraria. Muchas partes del cuerpo participan de manera interconectadas ( sobre todo el cerebro por su función hormonal a nivel del hipotálamo sobre el resto del organismo)), es por ello, que los sistemas pueden ser organizados según función, origen embriológico u otro tipo de característica particular. Dentro de estos casos, es el sistema neuroendocrino, el complejo que se encarga de la regulación fisiológica por medio de efectores a nivel periféricos en cada uno de los otros sistemas. Además, muchos aspectos de la fisiología clásica no son fácilmente incluidos dentro de esta clasificación tradicional.
El estudio de cómo la fisiología es afectada en ciertas enfermedades o situaciones extrafisiológicas se denomina fisiopatología.



Bienvenidos.

Hola, soy Javier Fajardo, estudiante de médicina del tercer semestre. El motivo por el cual hize este Blog, es para compartir, las tareas y trabajos que nos ha dejado nuestro Maestro de Fisiología. Cómo una prueba concreta de que si hize la tarea. A lo largo del semestre, iré subiendo trabajos que nos encarga tipo animaciones, para compartirlos.

Bienvenidos, al mundo de la Fisiología.